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A renormalisation group technique for spin and gauge 
systems with topological excitations 

G Aldazabalt and N Parga 
Centro Atomic0 BarilocheS and Instituto BalseiroB, 8400-Bariloche, Argentina 

Received 27 August 1981 

Abstract. We present a real space renormalisation group technique able to deal explicitly 
with gases of topological excitations. As examples we consider the two-dimensional XY 
model and the three-dimensional compact electrodynamics. 

1. Introduction 

The relevance of topological excitations to the behaviour of quantum field theories and 
statistical mechanical systems is by now well established. Their influence on the critical 
behaviour of some two-dimensional systems was noticed by Kosterlitz and Thouless 
(1973). These authors realised that, in spite of rigorous theorems forbidding in two 
dimensions the spontaneous breaking of a continuous symmetry group (Mermin and 
Wagner 1966, Mermin 1968), the XY model does exhibit a phase transition. Actually 
this transition is of a different nature: it is due to the existence of vortices which behave 
as a Coulomb gas. This system has a dielectric low-temperature phase and a plasma 
high-temperature phase. 

In lattice gauge theories (Wilson 1974, Kogut and Susskind 1975) there are many 
interesting abelian systems which possess topological excitations. Banks et a1 (1 977) 
showed that the monopoles of three-dimensional compact quantum electrodynamics 
(QED) can be treated as a Coulomb gas of point-like particles, while the four- 
dimensional model is a gas of strings of monopoles. The introduction of matter fields 
transforms the Coulomb potential into a Yukawa one (Einhorn and Savit 1978). 

To determine the critical behaviour of these systems it is important to take into 
account their topological structures explicitly. Renormalisation group (RG) cal- 
culations with this property have been carried out only for two-dimensional systems. 
Kosterlitz (1974) introduced a real space technique to study the Coulomb gas, and it 
was later applied to several systems. Elitzur et al (1979) used it in the 2, spin model, 
while Nelson and Halperin (1980) studied liquid crystals, and Parga and Van Himber- 
gen (1980, 1981) applied it to finite-size systems. 

However, there are cases where this technique may be awkward. For a Coulomb gas 
of strings, such as the one appearing in four-dimensional QED, it may be very 
complicated to integrate over string fluctuations of a given scale. 
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In this paper we present a real space RG technique with the property that the 
counting of fluctuations of topological excitations is done explicitly. As examples we 
study the two- and three-dimensional Coulomb gases, although we think it may be used 
in more complicated systems. 

Briefly the method is as follows. We put the gas on a square (or cubic) lattice and 
introduced a continuous scalar field so that the potential between pairs of charges does 
not appear explicitly. After this, changing the scale and integrating over the inner 
degrees of freedom associated with the scalar field we obtain a simple expression where 
we can easily sum over the charge fluctuations. Since we have a lattice, this sum is 
trivial. For instance, a charge inside a block composed of four sites can occupy only 
these positions and will be seen by the others smeared over them. Clearly this effect will 
produce a renormalisation of the chemical potential and of the interaction. 

The paper is organised as follows. In the next section we present the method, 
applying it to the two-dimensional Coulomb gas. The partition function is written in a 
convenient form to sum over charge fluctuations. We do this sum in (i 3 where we also 
derive the RG equations. In (i 4 we extend the technique to three dimensions. The last 
section contains our conclusions, and in an appendix we discuss a technical point. 

2. The two-dimensional Coulomb gas 

In this section we present our real space RG technique, applying it to the two- 
dimensional Coulomb gas. 

There are many physical systems which can be put into this form. Among them we 
mention the Villain form of the two-dimensional XY model (Villain 1975), the 
sine-Gordon quantum field theory (Samuel 1978) and the two-dimensional superfluid 
(Kosterlitz and Nelson 1977). 

The partition function is 

z=n I m ( i )  1’ e x p ( - p ’ X m * ( j ) + r ~  I r + k  m(j) ln l j -k /m(k))  (2.1) 

where m ( j )  is the charge on the site j and can take the values 0, *l. p 2  is the chemical 
potential, and K measures the coupling between pairs of charges. The prime in the sum 
reminds us that in two dimensions only neutral configurations contribute. The system 
possesses long-range forces, and their effects have to be taken into account as we iterate 
the RG equations. 

We have placed the Coulomb gas on a square lattice, and its spacing gives the size of 
a charge. If we double the scale, the chemical potential has to be altered because each 
charge is seen by the others smeared over a block of four plaquettes of the original 
lattice. The coupling K has also to be changed to take into account that a configuration 
with a dipole inside a block renormalises a similar configuration where the dipole is 
absent. 

Equation (2.1) can be cast into a more convenient form by introducing a scalar field 
defined on the lattice sites: 

1 m 

Z = n  dtp(j) 1 y $ m 2 ( J )  exp(---X (A,tp)*+2riXm(i)tp(i)) .  (2.2) 
I !-U2 m ( J )  2K 1.v I 

p’ and yo are related parameters, but from now on we shall use only the last one. TO 
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obtain this expression we added new degrees of freedom but now the long-range forces 
are not explicit. 

To start with the RG calculation we consider blocks containing four sites, as the one 
shown in figure 1. The xi are the values of the scalar field on these sites. 

The next step is to define the block degrees of freedom. A suitable choice is given by 

Figure 1. The four-site block for the two-dimensional lattice. The xi are the values of the 
scalar field defined on those sites. j denotes the block position. 

the sum of the four variables contained in the block. In this way 

i =  1 
( 2 . 3 a )  

(2 .3b )  

where j denotes the block position and the first sum was conveniently normalised. M ( j )  
is the total charge. 

To simplify the algebra it is convenient to make the following change of variables: 

cpl(]) = ;(XI - x 2  -x3 +x4), 

cp~i) = 4(x 1 + x2 - x3 - x4)1 (2 .4 )  

V3(]) = t(x1 -x2 + x3-x4)k 

The advantage of the new variables is that, together with ( 2 . 3 a ) ,  they transform 
according to irreducible representations of the symmetry group of figure 1. cp and cp3 
are singlets, while cpl and cp2 are members of a doublet. Under a rotation of 90" 

To express 2 in terms of the new variables we have to evaluate two quantities. One 

(2 .6)  

of them is associated with the block and given by a loop 

B ( j )  = (XI - x #  + (x2 - X 3 l 2  + (x3 -x4)2 + (x4 
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The other refers to the interaction between neighbouring blocks; because of cancel- 
lations, it is convenient to consider not only two blocks but the whole strips, as shown in 
figures 2 ( a )  and ( b ) .  Their contribution is 

. .  

la 

. .  

Figure 2. The strips of blocks for which we calculate the block 
interactions I, and I,: (a)  the strip in the x^ direction; ( b )  the strip in 
the y^ direction. 

Using (2 .3a)  and (2 .4)  the loop can be written as 

B ( j )  = 2(9 :  +cp:) j+49:( j )  

and the interaction in the 2 direction is 

Here we have used the notation 

(2 .8)  

A,cp,(i) = a( i  +x* )  - c p l ( i )  

A:q,  (1) 9, (i + 2 )  - cpI (i - x 

a,p, (1) = 94 (1 + 2) + 94 (i). 
(2.10) 

The interaction in the y* direction can be obtained from (2 .9)  by a rotation of 90". Using 
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(2.11) 

From (2.8) we see that the block contributes only with diagonal terms; I,  and I, instead 
have the finite differences and sums defined in (2.10). The sums, however, can be 
changed into differences; taking 

(2.12) 

we have that ( ~ ~ , c p ~ ) ~  + (A,cpi)2, while the squares of the differences do not change. 
Replacing B ( j ) ,  Z, and I, in (2.2) we obtain 

(2.13) 

where 

(2.14) 

The prime in the sum over the mi indicates that it has to be done keeping the block total 
charges fixed. The sources J1 and Jz are 

(from now on we shall use j to denote the block position). 
Although the sums are over the mi for convenience, we have introduced MI, M2 and 

M3. These are related to the mi through the same matrix given in (2.4). 
Except for minor details, the first integral in (2.13) is already of the same form as the 

initial expression (2.2). To obtain the RG equations we still have to evaluate the 
functional F, to sum over the m, and to absorb the result in the parameters K and yo .  

In the rest of this section we calculate F, leaving until § 3 the discussion of the other 
two points. 

The three integrals in F are gaussian. cpl and (PZ are coupled only through cp3, and we 
integrate over them first. The integral over cpl yields the factor 

(2.16) 
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G(1;  m 2 )  is the lattice Green function; in Fourier space it reads 

G ( k ; m z ) = ( 4  v = x . y  1 s in2k, /2+m2)  
- 1  

(2.17) 

There are several terms contained in the argument of (2.16). We discuss them in detail. 
The one quadratic in A'cp is 

and an expansion of G ( k ;  m 2 )  in powers of (k,,")2 gives a host of new interactions for 
the scalar field. However, according to the usual arguments of relevant operators (Amit 
1978) we may keep only the first term; then 

G(1-  n ; m 2 )  = SI,,/m2 (2.19) 

and (2.18) gives a contribution 

(2.20) 

The last expression comes from an argument valid at large distances that we discuss in 
the appendix. 

For a dilute system, charges will be several blocks apart, and the terms including 
M , ( l )  will contribute only at the same site. These are 

-4r'KG(O; 4) 1 M :  ( I )  (2.21) 
1 

and 
- (2.22) 

The integral over cp2 gives similar results; the finite differences in (2.20) and (2.22) are 
now taken in the F direction, and MI has to be replaced by M2.  In  both integrals there 
are also quadratic and linear terms in c p 3 ;  the linear ones contribute to a source given by 

The last integral then yields 

where the Fourier transform of the Green function G*( l ;  m') is 
- 1  

4G(O;4)  1 sin' k, ,+m')  . ~ * ( k ; m ' ) = ( 4  ~- (2.25) 

The difference from (2.17) comes from the term A I Q ~  present in the sources J1 and 52. 
By similar considerations to those that led us to equations (2.20)-(2.22) we can express 
this result as 

exp( -4r2KG*(0;  8) 1 {M3(I) + (-)'x''vG(O; 4 ) [ A ' $ f 1 ( 0  + A:M2(1)])'). 

sin' k ,  
w = x . y  2 v = x . y  

(2.26) 
I 
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For a dilute system this can be further simplified. In this case 

because if there is a charge in the block 1 there cannot be another in a neighbouring 
block. In the same way we have 

(2.28) 

Combining expressions (2.20)-(2.22) and (2.26)-(2.28) in (2.14) the partition 
function finally reads 

(2.29) 

gi = 2G(O; 4)[1+2G(O; 4)G*(0; 8)] g2 = 2G*(0; 8). (2.30) 

Equation (2.29) has a very simple structure. The first factor depends only on the 
block variables, while the second is a product over all the blocks and contains the sum 
over charge fluctuations with block charges fixed. Since the system is on a lattice, this 
sum is trivial and its result has to be absorbed in the parameters K and yo; this we do in 
the next section. It should be noted that (2.29) depends only on invariants of the 
symmetry group of the square. 

3. The renormalisation group equations 

Before obtaining the RG equations we have to sum over the fluctuations of the charges 
inside the block. Since we have a lattice, there is a finite number of possibilities; for 
instance, if M(1) = 1 there is a single charge in the block 1 and it can be in any of the four 
sites. If we add a dipole to this block the configurations we obtain are ruled out for a 
dilute system. If M(1) = 0 up to O( y g )  we can have either an empty block or a dipole. 
We do not consider objects with M(1) = 2 because they would have an activity O( y i ) .  

Keeping only the empty block, the  single charge and the dipole, the product over the 
blocks in (2.29) can be written 

n (1 +4y0 e-”3(e2rric +e-zniv)  -4y;(2rg1)’(e-”’ +e-”2)[(A,(p)2+ (A,(P)~]  
I 

+ 4y: (2e-”I + e-”I)} (3.1) 

where 

vi = 2 r Z K ( g i  + gz) v2 = 4r2Kg ,  v3 = r 2 K ( g i  + g2/2). (3.2) 

To obtain this expression we have again kept only terms (AV)’ for the scalar field and 
used the result of the appendix. 
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The term linear in yo corresponds to a single charge inside the block, while the 
quadratic one appears when there is a dipole in it. For a dilute system the last situation 
is very unlikely, and at most it will occur in only one block. 

We can now proceed to obtain the RG equations. Consider a configuration with n 
charges in different blocks; its contribution to (2.29) has a factor 

(3.3) 

where 

Y R  = 4e--”’y0 (3.4) 

is the new activity. v 3  appears as a result of integrating the Coulomb potential over the 
size of the block; it involves Green functions at the origin and contributes to the 
chemical potential. The factor 4 comes from the number of positions the charge can 
take inside the block. 

The addition of a dipole in any of the blocks will give, after summing its contribution 
to (3.3), the constant factor 

exp[4yiA(2e-”’ +e-”*)] (3.5) 

(A  is the total area) and a renormalisation to the scalar field 

AK = KR-K = -2[87zG(O; 4)]’(e-”’ +e-”Z)K2yi  (3.6) 

which together with 

Ay  = y R - y O = - ( l  -4e-”3)yo (3.7) 

are the RG equations. 
A numerical evaluation of the Green functions contained in v 3  gives G(0;  4) = 0.13 

and G*(O; 8) = 0.09. From these values we calculate the zero of the right-hand side of 
(3.7), obtaining K, = 0.38. Due to the small value of G*(O; 8), the largest contribution 
to v g  comes from the term 27z2KG(O; 4). 

Above K, the line y = 0 consists of infrared-stable fixed points. Linearising (3.6) 
and (3.7) around K = K, and y = 0 and absorbing a constant factor in the parameters we 
obtain 

(3.8) 

where x is proportional to K - K,. In these expressions we recognise the finite- 
difference version of the differential equations found by Kosterlitz (1974). 

For those values of the parameters such that y renormalises to 0, the gaussian 
approximation is valid and the critical index Q is given by 

2 Ay = -YX AX = -y 

where K R ( Q 3 )  is KR after an infinite number of iterations. In particular for the critical 
point K ,  we obtain Q = 0.41. This is higher than the exact value 7)  = a; however, it seems 
plausible that our value can be improved by taking larger blocks. In this case G(0; m2) 
and G*(O; m2) will become smaller, because their masses, which depend on the block 
size, will increase, giving rise to a larger K,. 
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4. A three-dimensional example: compact QED 

The RG technique presented in §$2  and 3 can be easily extended to three dimensions. 
To this end we consider again the Coulomb gas. An interesting system which can be 
written in this way is compact QED; this can be thought of as a U(l)  lattice gauge theory 
defined by the Wilson (1974) action or as spontaneously broken continuum O(3) gauge 
theory. Banks er af (1977) in the first case and Polyakov (1977) in the second have 
shown that the monopoles of these systems behave as a Coulomb gas. 

The phase diagram is simple, the gas is always in its plasma phase, and for compact 
OED this means the existence of a confining potential between electric charges 
(Polyakov 1977). The reason for this difference from the two-dimensional gas can be 
found in the different behaviour of entropy and energy of a single topological excita- 
tion: while in two dimensions both are proportional to In R (R is the size of the system) 
allowing for a compensation, in the present case only the entropy has this dependence. 

One starting point is the partition function written as in (2.2), but in one more 
dimension. The field ~ ( j )  and the m ( j )  are defined on the sites of a cubic lattice. To 
obtain the RG equations we consider blocks containing eight sites, as the one shown in 
figure 3. As in two dimensions the variables xi  defined on its corners do not transform 
simply under the symmetry group of the cube. The orthogonal linear combinations 
which are the basis of irreducible representations are 

where 

-1 1 1 -1 -1 1 1 -1 
1 1 -1 -1 1 1 -1 -1 j -i 1 -1 1 -1 -1 -1 -1 -1 -1 ;I, 

Ji 
-1 -1 -1 -1 
-1 1 -1 1 1 -1 1 -1 

(4.3) 

~ ( j )  is the block field and we have to integrate over the cpi keeping it fixed. cpl, QZ, 1p3 

and (p4, cpS,  Q6 are triplets, whereas cp and (p7 are singlets. 

Figure 3. The eight-site block for the three-dimensional lattice. The meaning of the x ,  is as 
in figure 1. 
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The quantities B ( j )  and Z,, I ,  and Z, are defined analogously to (2.6) and (2.7) and 
can be easily evaluated. B ( j )  now involves all the loops shown in figure 3, but again it 
contains only diagonal terms in the vi. As to the block interactions, we only need to 
calculate Z, ; once we know it we can find Iy and Z, using the transformation properties of 
the qi. 

After a lengthy but simple algebra the partition function can be written 

(4.4) 

The functional F contains the integrals over the inner degrees of freedom. Those 
are gaussian and have mass terms which depend on the block size 

F({mi})  = n I dqu(l)  exp( - 4 ~  [ ( A ~ G ) '  + 8 ~ :  I) 1 W 

a=4.6 -m 

Here 

J2 and J3 can be obtained from J 1  using the transformation properties of the vi. M(1) is 
the block charge 

8 

M ( I ) =  mi 
i = l  

(4.7) 

and the Mi are related to the mi by the matrix (4.3). 

used in § 2, we obtain 
The integrals in (4.5) are immediate and, after doing approximations similar to those 
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where 

hi =2G(O; 4)[1+4G(O; 4)G’(O; 8)] 

h3=2G(O; 12)[1+6G(O; 12)G‘(O; 8) ]  

hz = 2G’(O; 8 )  
(4.9) 

and G’(1; m’) is the Fourier transform of 

~ ’ ( ~ ; m ’ ) = ( 4  1 -- 4G(O; 4 )  1 sin’ kw -4G(O; 12)  sin’ kx +m’)  
-1  sin’ k, 

w = x . y , z  2 w=y.z  

(4.10) 

Except that 2K has been replaced by K ,  the first factor in (4.8) is equal to the initial 
expression. The second factor contains the sum over the mi, and it distinguishes with 
different coefficients hi the Mi transforming according to different irreducible 
representations. It is trivial to check that the last exponential has the right trans- 
formation properties. It should be noted that equations (2.29) and (4.8) have a very 
similar appearance. 

To obtain the RG equations we proceed as in § 3 ,  first summing over charge 
fluctuations inside the block and considering later the addition of a dipole as a 
renormalisation effect. The result is 

KR‘ = 2 K - ’ { 1 + 8 K y : [ 4 ~ G ( O ;  4)]2(e-”1+2e-”Z+3e-CL3)} Y R  = 8 e-”yo (4.11) 
where 

p = T’K(3hl +3hz+h3) p1=.rrZK(h1+2h2+h3) 
(4.12) 

The essential difference from the two-dimensional case is that in three (or more) 
dimensions there is an O( y : )  renormalisation to K .  As a consequence the fixed line at 
y o  = 0 reduces to the point K-’ = 0. 

In lattice compact QED K-’ is proportional to the lattice spacing and, as noticed by 
Banks er aZ(1977), this means that monopoles disappear in the continuum limit. As a 
consequence, the confining potential between electric external charges becomes a 
Coulomb one. 

pz = 7T2K(3hl + h3) / . ~ 3 = 2 ~ ’ K ( h i + h 2 ) .  

5. Conclusions 

We have developed a real space RG technique able to deal with systems with topological 
excitations. In the cases treated, it has succeeded in reproducing all the features of the 
corresponding phase transitions. For the two-dimensional Coulomb gas it describes 
fairly well the unbinding of vortices, giving a segment of points below a critical 
temperature K,’ where the gaussian approximation is valid. Although the value of 
K I ’  is too high, it could be improved by considering larger blocks. In this case the 
Green functions at the origin appearing in v3 would get higher masses and consequently 
their values would be appreciably reduced, giving rise to a larger K,. 

The generalisation to three dimensions was immediate and we obtained the right 
properties of compact QED, i.e. monopoles are dense for any non-zero value of K - ’ .  We 
believe that the method is also applicable to more complicated systems. Although we 
have restricted our analysis to Coulomb potentials, the technique could be used with 
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other interactions. An interesting case is the Yukawa potential, a problem which 
appears naturally in some lattice gauge theories (Einhorn and Savit 1978). 

An interesting problem which could be treated is a gas of loops interacting via a 
Coulomb potential. The auxiliary field is now a vector one, and the expression 
equivalent to (2.2) has gauge invariance. Once the intra-block degrees of freedom 
associated with the vector field are integrated over, the counting of string fluctuations 
can be done either explicitly or in combination with a Monte Carlo simulation 
(Swendsen 1979). 

Appendix 

In this appendix we show that the approximation used in (2.20) is correct. 
Strictly speaking (A‘cp)’ is a new interaction generated by the RG, and we should 

keep it together with the initial ( A P ) ~  and see how it renormalises. Nevertheless this 
would complicate unnecessarily our calculations, and we prefer to use the following 
argument. 

We consider the two interactions (AV)’ and ( A ’ c ~ ) ~  and see how they renormalise 
under a Migdal-Kadanoff transformation (Migdal 1975a, b, Kadanoff 1976). Figure 
A1 shows a block where we have to shift the inner bonds and later decimate by 
integrating over the yi. 

Figure A l .  The block where we apply a Migdal-Kadanoff transformation. The xi and the y, 
are the values of the scalar field at the corresponding sites. We shift the bonds connecting 
the y,. 

After the shifting is done, the interaction ( A ’ ( P ) ~  in the bond (xl, x2) gives 

(AI)  -Z(xI-x2)2/2K e 

while for (AV)’ we obtain 

These two results show us that after one application of the Migdal-Kadanoff 
transformation (AV)’ keeps its form and its coefficient while (A’q)* becomes twice 
(AV)’. This is the result used in (2.20). 
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